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Abstract

Consider the Hardy-type integral operator T : L’ (a,b) — L' (a,b), — oo <a<b< oo, which is
defined by

(1)) = o) [ () (1) di.

In the papers by Edmunds et al. (J. London Math. Soc. (2) 37 (1988) 471) and Evans et al.
(Studia Math. 130 (2) (1998) 171) upper and lower estimates and asymptotic results were
obtained for the approximation numbers a,(7T) of T. In case p = 2 for “nice” u and v these
results were improved in Edmunds et al. (J. Anal. Math. 85 (2001) 225). In this paper, we
extend these results for 1 <p < oo by using a new technique. We will show that under suitable
conditions on # and v,

‘/1’/ u(2)o(2)| dt — na,(T)

lim sup n'/?|2

n— oo

<111y i1y + 101 ) (laelly + [1ll,) + 30 o],

where ||w||, = f [w(t)[’ dt)l/p and 4, is the first eigenvalue of the p-Laplacian eigenvalue
problem on (0, 1).
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1. Introduction

The approximation numbers a,(T) of
(1)) = o) [ utor () de m

as an operator from L”(R") to itself were studied in [EEH1,EEH2,EHL1,EHL2].
Here R" = (0, c0), 1<p< oo, and u,v are real-valued functions with ueLfo/c(ﬂﬁ),
and ve LP(R"); as usual, p' = p/(p — 1).

If T is bounded from I7(R") to itself, then to each ¢>0 there corresponds
N(e)eN such that

&
aN(s)+2(T)<\/_§<aN(g)(T) (2)

(see [EEHI]).
Under certain restrictions on u and v it was shown that

lingC na,(T) = ocp/ lu(t)v(2)| dt (3)
n= oo 0
(see [EEH2] for p =2, [EHL2] for 1 <p< oo and for related results see also [NS].)

In [EHL2] it was shown that (3) is true also for the Hardy-type operator on trees
and for 1<p< c0.

Further extensions were given in [LL,LMN] to deal with the cases in which 7T is
viewed as a map from L? to L4, for any p,ge([l, oo].

In the paper [EKL], estimate (3) was improved in the case p = 2 (L? is the Hilbert
space and then given any point it is simple to find the nearest element in any closed
subspace by using a linear projection, and it is known that «, = 1/x). It was shown
that under some conditions on u and v we have

1 b
nan(T)—%/ |uv)|
a

3
<3\/§(||”/||2/3,1 A1V May3.0 (el o g + Mol p) + - [[uo|[[

lim sup n'/?
n— oo

I being an arbitrary interval in ‘R.

In the present paper, we will extend this result to 1<p<oo. Under further
conditions on u and v we get for the approximation numbers of the map
T:LP(I)— LP(I) the following estimates:

lim sup n'/?

n— oo

b
na,(T) —oc[,/ |uv]

<3¢, PV 1y, + 1101y ) el g+ 110l 1) + 3ol



J. Lang | Journal of Approximation Theory 121 (2003) 61-70 63

where o, = (1/ lp)l/p (4p is the first eigenvalue of the p-Laplacian problem on (0,1)
and 4, = ()" 5 Thus,
() =2 [ Julop0ldr-+ 007,
I

and under the conditions which we impose, the exponent —% cannot be much improved.
This is the first theorem of this kind which is covering the case p #2 and it is surprising

that there is the same power n'/? for any 1 <p< co. We do not know at the moment
whether or not it is possible to show the existence of a genuine second term in the
expansion of a,(7T). Our results follow from the systematic use of the function 4
introduced in [EHL1] together with techniques based on those in [EEH2,EKL].

2. Preliminaries

Throughout the paper, we shall assume that — oo <a<b< oo and that
uel’(a,b), vel’(a,b) and u,0>0 on (a,b). )

Under these restrictions on u and v it is well known (see, for example, [EEHI,
Theorem 1]) that the norm ||T|| of the operator T : L?(a,b)— L?(a,b) in (1) satisfies

T~ sup |[uxamlly @l |p. () (5)

xe(ab)

UX (x,b)

Here y¢ denotes the characteristic function of the set S and

Il = ([ ror dz)l/p, l<p<w, Ic(ab).

Moreover, by F) ~F, we mean that C'F, <F, <CF; for some positive constant
C>1 independent of any variables in Fy, F> >0.
Given any interval I = (¢,d) < (a,b), define

J(I) = sup [|uy(eolly lloxcally -
xel
A straightforward modification of Lemma 2.1 in [EHLI1] shows that for any

de(a,b), the function J((-,d)) is continuous and non-increasing on (a,d). Now, for
any xel = (¢,d)<=(a,b), set

(1)) = o)) [ a0y ()t
Then the norm of the operator T, : LP(I)— LP(I) satisfies
1l ~J(T).

We next introduce a function 4 which will play a key role in the paper. Given
I = (c,d)c(a,b), set

A(I) = sup inf |[Tf —av]|,;.
fllp=1 *€R
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From (4) it follows that T is a compact operator from L into I” (see [EGP] or [OK])
and then from [EHL2, Theorem 3.8] we have that

A = inf [T |LP (1) = L2 (D],
where

Toif () = o)) / o)1) .

X

Lemma 2.1. Let I = (c,d)=(a,b) and 1<p<oo. Then ||Tyx;|LP(I)—L(I)|| is
continuous in Xx.

Proof. See Lemma 3.4 in [EHL2] and put I' = (a,b) and K =1. O

Lemma 2.2. Suppose that u and v satisfy (4), a<c<d<b and 1 <p< oo. Then:

(1) The function A(-,d) is non-increasing and continuous on (a,d).
(2) The function A(c,-) is non-decreasing and continuous on (c,b).
(3) limy_q, A(a,y) =lim,_, A(y,b) =0.

Proof. For p = 2 this lemma was proved in [EKL], (see [EKL, Lemma 2.3]). The
proof of this lemma for p#2 can be obtained by modification of the proof of Lemma
2.3 from [EKL]. O

Lemma 2.3. Suppose that T : I?(a,b)— L?(a,b) is compact and 1<p<oo. Let I =
(¢,d) and J=(c,d) be subintervals of (a,b), with J<I, |J|>0, |I—
J|>07f:vp(x) dx< oo and u,v>0 on I. Then

A(I)>A(J)>0. (6)

Proof. For p = 2 this lemma was proved in [EKL] by using that the projection on
the closest element is a linear projection in L?. This is not true for p#2 and in this
proof (1 <p< o0) we will use Lemma 3.5 from [EHL2].

Let 0<fel”(J), 0<||f|],,<|lfll,;<1 with suppf<J. Let yeJ, then

1T
and then from [EHL2, Lemma 3.5] we have
min{|| Ty,

>0 and ||T(y.d’)||p7]>0

o 1Tl b < min [Tl

which means A(J)>0.
Next, let us suppose that ¢ = ¢ <d’<d. By Evans et al. [EHL2], Theorem 3.8,
there exist xoeJ and x; €l such that A(J) = ||Tx, /||, ; and A(I) = ||T, (|, - Since

u,v>0 on [, it is then quite easy to see that xoeJ? and x;el°.
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If xo = xi, then, since u,v>0 on I, we get

A = Tw il > T sl s = (1 Tx ], = A).
If xo+#x1, then

A = [1Tx all, 1 Z 1 Tl s 2 1T s

|p,]> ||TX0J||p.J = A(J)

The case c< ¢ <d' = d could be proved similarly and the case ¢ < <d' <d follows
from previous cases and the monotonicity of A(I). O

Remark 2.4. It follows from the continuity of A4 that for sufficiently small ¢ >0 there
isan a;, a<a;<b, for which A(a;,b) = ¢. Indeed, since T is compact, there exists a
positive integer N(e) and points b = ag>a; > - >ay) = a with A(a;,a;1) = ¢,i =
1,2,...,N(e) — 1 and A(a,ay()-1) <e.

By the same arguments as in the proof of Lemma 2.6 from [EKL] we have:

Lemma 2.5. If T : L”(a,b) - L’ (a,b) be compact and ve L?(a,b), ueL? (a,b) then the
number N (&) is a non-increasing function of ¢ which takes on every sufficiently large
integer value.

The quantity N(¢) is useful in the derivation of upper and lower estimates for the
approximation numbers of 7.

Lemma 2.6. For all ¢€(0,||T||),

an(+2(T)<e<ay(T).

Proof. This follows from [EHL2, Lemma 3.19] (put K = (a,b)). O

A version of this result, with a slightly different N(¢), was first proved in [EEHI]
and was then extended in [EHL1]. For general # and v it is impossible to find a simple
relation between ¢ and N(¢), but by using the properties of 4 the behavior of ¢N(¢)
when ¢—0, can be determined.

Lemma 2.7. Given veL?(a,b), ueL” (a,b) we have

b
lim eN(e) = acp/ lu(t)v(t)] dt.

e—0,

This result follows from an adaptation of the argument of [EHL2]; see,
in particular, Theorem 6.4 of that paper. Together with Lemma 2.6 this
shows, again using the techniques of [EHL2], that the following theorem
holds.
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Theorem 2.8. Given ve LP(a,b), ueL? (a,b) the operator T defined in (1) satisfies
b
lim na,(T)=o, [ |u(t)v(?)| dt,

NS
n— oo a

where o, = A((0,1),1,1).

A result of this type was established under weaker conditions on u and v in
[EHL2].
In [EL] was showed that A((0,1),1,1) is equal to (1//1,,)1/” where 4, =

(Sinfg/p))p 1# is the first eigenvalue of the p-Laplacian problem on (0, 1).

3. Technical results

Here, we give some results of a technical nature which will prove very useful in the
sequel. We begin with some facts about the function 4 which were proved in [EHL2]
(see Lemmas 4.1, 4.2 and 4.3 in [EHL2] with I" = I) for the Hardy-type operators on
trees.

Lemma 3.1. (i) Let I = (¢,d) < (a,b) and suppose that u and v are constant functions
over I. Then

AL, u,0) = |||ulfv|4((0, 1), 1, 1).
(ii) Let I = (c,d)<(a,b) and suppose that ve LP(I) and uy,uye L” (I). Then

[ AL, ur,0) = AL ua, o) [ <y = wally fl[0l], -

(iii) Let I = (¢,d)<(a,b) and suppose that ue L’ (I) and vy, vy L’ (I). Then
|A(I,u,1)1) - A(I7 u, 02)|<2||u||p’,1||vl - Uz“p,l'

We now turn to the approximation of functions from L” and I by step-functions.

Suppose uel”(a,b) and vel’(a,b) and let a>0. We define m,eN by the
following requirements:

There exist two step-functions, u, and v,, each with m, steps, say,

ty(x) = Z} Gy (%), valx) = Zl Vi, (%) (7)
Jj= Jj=
where {w,(j)};Z, is a family of non-overlapping intervals covering (a,b), such that
for
oy = ||u— ”szp',(a,b) and o = |[v - UaHp,(a,b)»
we have
(1) max (o, o) <o, (8)

and
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(i) for any step-functions u,tv/, with less than m, steps, say n, steps,
1y, <my, max(|[u— “Qpr(a,b)’ o — Ug{||p7(a,b)) >0
Thus, m, is the minimum number of steps needed to approximate « in L and v in
L7 with the required accuracy. Note that, plainly,
[l =ty iy <o {0 = vl oy <

The best way to choose &; and ; for given {wo{}]'v”:"1 is by finding ¢&; and v, such that
/ o) = & st — &) dr =0

and
/ I~ santo(t) —) e =0

(see [S, Theorem 1.11]).
It turns out that the relationship between o and my, is crucial for us; we next
address this matter.

Lemma 3.2. Suppose ue C(a,b)n L7 (a,b) and ve C(a,b) L/ (a,b), at least one of
them, say u, being non-constant. Then, when o decreases to 0, m, increases to oo.

Proof. This lemma was proved in the case p = 2 in [EKL], (see [EKL, Lemma 3.4]).
The proof for the case p = 2 from [EKL] can be simply modified for 1<p<oo. O

Lemma 3.3. Suppose ue C(a,b)n LV (a,b) and ve C(a,b) L/ (a,b), at least one of
them, say u, being non-constant. Fix >0 and set A, = {f;0<f<a and mp = m,}.
Then, A, is an interval with y = inf A, and ye A,.

Proof. By straightforward modification of the proof of Lemma 3.5, [EKL] for the
case p = 2 we can get the proof for 1<p<oo. O

Lemma 3.4. Suppose that ue L” (a,b) ~ C(a,b) and ve L?(a,b) n C(a, b) are not equal
to zero on (a,b), indeed, assume at least one of u and v be non-constant on (a,b). Then,
there exists oy>0 such that given any o,0<a <oy, there exists a [,0<pf <o, with
mg =my + 1 or mg = m, + 2.

Proof. By simple modification of the proof of Lemma 3.6 [EKL] for the case p =2
we can get the proof for 1<p<oo. O

Lemma 3.5. Let — o0 <a<b< o and suppose that u' € [7'/"+V(a,b)~ C(a,b). For

each small h>0 define
1

X|= g Xip = xi+h foriel, .. [2/K);

put J; = (a,b) " (x;,xiv1), i€l ..., [2/F?].
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Then
/b |u/([)|1”/(1i’+1) dt = lim [%] |J;| max |u/(x)|p’/<P’+1)
a h—0 1 xeJ;
2/
= lim Z |J|mm |u |P/(p’+l

h—0

Proof. Simply use the definition of the integral. [

We are now prepared to establish an important estimate for lim sup,_,,, om,.

Theorem 3.6. Suppose uelL”(a,b), vel?(a,b) and u'el?/?+V(a,b)nC(a,b),
v e L2/ (a,b)~ C(a,b). Then,
lim sup Ofma.<C(P7P/)(||“,|\p//(pf+1),(a,b) + Hvl||p/(p+l)<(a,b))'

o—04

Proof. This theorem was proved for p = 2 in [EKL]. With help of our previous lemmas
it is simple to modify the proof of Theorem 3.8 [EKL] for the case I<p<oo. [O

4. The Main theorem

The next theorem give us quite precise information about remainder estimates for
N(e).

Theorem 4.1. Let —oo<a<b<oco, let uel’ (a,b), vel?(a,b) and suppose that
u' e 7'V (a,b) ~C([a,b]), v'eL’?)(a,b)~C(|a,b]). Then

hmsup oc,,/ lu(t)o(1)| dt — eN(e)| N> (e)

e—0,

<c(p7p/)(||u/||p’/(p’+l),(a,b)+||U/||p/(p+l)A(ab)(Hu” @p) T v, ab)

+ 3ot [|uv]y ()

where o, = A((0,1),1,1) and c(p,p') is a constant depending only on p and p'.

Proof. For p = 2 this theorem was proved in [EKL]. The proof of this key theorem
for 1 <p< oo can be obtained by easy modification of the proof of Theorem 4.1 from
[EKL]. O

From the previous theorem follows the Main theorem with the estimate for the
approximation numbers of T given by (1).
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Theorem 4.2. Let —o <a<b< o, suppose that uel” (a,b), vel?(a,b) and let
W' e P10 (a, )~ C((a,b)), v'e L’V (a,b)nC((a,b)). Then

b
ocp/ |uv| dt — na,
a

b
<3ocp/ |uv| dt
a

lim sup n'/?
n— oo

' 3C(p7pl)(||u/||p//(p/+l)’(a’h) + ||Ul|)||P/(P+l)7(a¢b))(||u||pg(a,b) + HUHp,(a,b))a
where o, = wp/pp_ll

Proof. Simply use Theorem 4.1, Lemmas 2.5, 2.6 and the fact that
lim,,_, oo n*a,(T) = 0 for any a<1 and o, = (i)l/”. O

For a bounded interval (a, b), it follows immediately from Holder’s inequality that
Theorem 4.2 gives rise to

Theorem 4.3. Let —c0 <a<b< oo and suppose that u',v' € C([a,b]). Then

b
lim sup n1/2|oc,,/ |uv| dt — nay,|
a

b
<3ap/ |uv| dt + 3c(p, p') (b — a)
X (||u,||p’,(a,b) + |\U/||p,(a,b))(|\”pr,(a,b) + [0l (a))

where o, = —Si“g’;/mp’pl’*l.

From the following observation we can see that any optimal exponent from
Theorem 4.2 has to belong to [3, 1].

Observation 4.4. Let — o0 <a<b< w.

(i) Let a<1/2. Then  for  every uel” (a,b), veL’(a,b) with
u' e LP'P N (a, b))~ C([a, b)), e L?’?V)(a,b) nC([a,b]) we have

b
ocp/ |uv|dt—nan(T)‘ =0.

lim sup »*

n— o0

(ii) Let o> 1. Then there exist a and b, and functions u and v satisfying the conditions
of Theorem 4.2 on the interval defined by a and b, such that
b

ocp/ |uv|dt—nan(T)‘ = 0.

lim sup »n*

n— o0
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Proof. (i) follows from the proof of Theorem 4.1. Put m, = [N*(¢)] or [N*(¢)] + 1.
(ii) Take (a,b) = (0,1) and u =1, v =1+ x. Then put m, = [N*(¢)] in the proof
of Theorem 4.1 and the result follows. [
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