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Abstract

Consider the Hardy-type integral operator T : Lpða; bÞ-Lpða; bÞ;�NpaobpN; which is
defined by

ðTf ÞðxÞ ¼ vðxÞ
Z x

a

uðtÞf ðtÞ dt:

In the papers by Edmunds et al. (J. London Math. Soc. (2) 37 (1988) 471) and Evans et al.

(Studia Math. 130 (2) (1998) 171) upper and lower estimates and asymptotic results were

obtained for the approximation numbers anðTÞ of T : In case p ¼ 2 for ‘‘nice’’ u and v these

results were improved in Edmunds et al. (J. Anal. Math. 85 (2001) 225). In this paper, we

extend these results for 1opoN by using a new technique. We will show that under suitable

conditions on u and v;

lim sup
n-N

n1=2 l�1=p
p

Z b

a

juðtÞvðtÞj dt � nanðTÞ
����

����
pcðjju0jjp0=ðp0þ1Þ þ jjv0jjp=ðpþ1ÞÞðjjujjp0 þ jjvjjpÞ þ 3apjjuvjj1;

where jjwjjp ¼ ð
R b

a
jwðtÞjp dtÞ1=p and lp is the first eigenvalue of the p-Laplacian eigenvalue

problem on ð0; 1Þ:
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1. Introduction

The approximation numbers anðTÞ of

ðTf ÞðxÞ ¼ vðxÞ
Z x

0

uðtÞf ðtÞ dt ð1Þ

as an operator from LpðRþÞ to itself were studied in [EEH1,EEH2,EHL1,EHL2].

Here Rþ ¼ ð0;NÞ; 1opoN; and u; v are real-valued functions with uAL
p0

locðR
þÞ;

and vALpðRþÞ; as usual, p0 ¼ p=ðp � 1Þ:
If T is bounded from LpðRþÞ to itself, then to each e40 there corresponds

NðeÞAN such that

aNðeÞþ2ðTÞp effiffiffi
2

p paNðeÞðTÞ ð2Þ

(see [EEH1]).
Under certain restrictions on u and v it was shown that

lim
n-N

nanðTÞ ¼ ap

Z
N

0

juðtÞvðtÞj dt ð3Þ

(see [EEH2] for p ¼ 2; [EHL2] for 1pppN and for related results see also [NS].)
In [EHL2] it was shown that (3) is true also for the Hardy-type operator on trees

and for 1opoN:
Further extensions were given in [LL,LMN] to deal with the cases in which T is

viewed as a map from Lp to Lq; for any p; qA½1;N
:
In the paper [EKL], estimate (3) was improved in the case p ¼ 2 (L2 is the Hilbert

space and then given any point it is simple to find the nearest element in any closed
subspace by using a linear projection, and it is known that ap ¼ 1=p). It was shown
that under some conditions on u and v we have

lim sup
n-N

n1=2 nanðTÞ � 1

p

Z b

a

juvj
����

����
p3

ffiffiffi
2

p
ðjju0jj2=3;I þ jjv0jj2=3;I Þðjjujj2;I þ jjvjj2;I Þ þ

3

p
jjuvjjj1;I ;

I being an arbitrary interval in R:
In the present paper, we will extend this result to 1opoN: Under further

conditions on u and v we get for the approximation numbers of the map
T : LpðIÞ-LpðIÞ the following estimates:

lim sup
n-N

n1=2 nanðTÞ � ap

Z b

a

juvj
����

����
p3cðp; p0Þðjju0jjp0=ðp0þ1Þ;I þ jjv0jjp=ðpþ1Þ;I Þðjjujjp0;I þ jjvjjp;I Þ þ 3apjjuvjj1;I ;
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where ap ¼ ð1=lpÞ1=p (lp is the first eigenvalue of the p-Laplacian problem on (0,1)

and lp ¼ ð 2p
sinðp=pÞÞ

p 1
p0pp�1: Thus,

anðTÞ ¼ ap

n

Z
I

juðtÞvðtÞjdt þ Oðn�3=2Þ;

and under the conditions which we impose, the exponent�3
2
cannot be much improved.

This is the first theorem of this kind which is covering the case pa2 and it is surprising

that there is the same power n1=2 for any 1opoN: We do not know at the moment
whether or not it is possible to show the existence of a genuine second term in the
expansion of anðTÞ: Our results follow from the systematic use of the function A

introduced in [EHL1] together with techniques based on those in [EEH2,EKL].

2. Preliminaries

Throughout the paper, we shall assume that �NpaobpN and that

uALp0 ða; bÞ; vALpða; bÞ and u; v40 on ða; bÞ: ð4Þ
Under these restrictions on u and v it is well known (see, for example, [EEH1,
Theorem 1]) that the norm jjT jj of the operator T : Lpða; bÞ-Lpða; bÞ in (1) satisfies

jjT jjB sup
xAða;bÞ

jjuwða;xÞjjp0;ða;bÞjjvwðx;bÞjjp;ða;bÞ: ð5Þ

Here wS denotes the characteristic function of the set S and

jjf jjp;I ¼
Z

I

jf ðtÞjp dt

� �1=p

; 1opoN; ICða; bÞ:

Moreover, by F1BF2 we mean that C�1F1pF2pCF1 for some positive constant
CX1 independent of any variables in F1;F2X0:
Given any interval I ¼ ðc; dÞCða; bÞ; define

JðIÞ ¼ sup
xAI

jjuwðc;xÞjjp0;I jjvwðx;dÞjjp;I :

A straightforward modification of Lemma 2.1 in [EHL1] shows that for any
dAða; bÞ; the function Jðð�; dÞÞ is continuous and non-increasing on ða; dÞ: Now, for
any xAI ¼ ðc; dÞCða; bÞ; set

ðTI f ÞðxÞ ¼ vðxÞwI ðxÞ
Z x

a

uðtÞwIðtÞf ðtÞ dt:

Then the norm of the operator TI : LpðIÞ-LpðIÞ satisfies
jjTI jjBJðIÞ:

We next introduce a function A which will play a key role in the paper. Given
I ¼ ðc; dÞCða; bÞ; set

AðIÞ :¼ sup
jjf jjp;I¼1

inf
aAR

jjTf � avjjp;I :

J. Lang / Journal of Approximation Theory 121 (2003) 61–70 63



From (4) it follows that T is a compact operator from Lp into Lp (see [EGP] or [OK])
and then from [EHL2, Theorem 3.8] we have that

AðIÞ ¼ inf
xAI

jjTx;I jLpðIÞ-LpðIÞjj;

where

Tx;I f ð�Þ :¼ vð�ÞwI ð�Þ
Z �

x

vðtÞwI ðtÞ dt:

Lemma 2.1. Let I ¼ ðc; dÞCða; bÞ and 1pppN: Then jjTx;I jLpðIÞ-LpðIÞjj is

continuous in x:

Proof. See Lemma 3.4 in [EHL2] and put G ¼ ða; bÞ and K ¼ I : &

Lemma 2.2. Suppose that u and v satisfy (4), apcodpb and 1opoN: Then:

(1) The function Að�; dÞ is non-increasing and continuous on ða; dÞ:
(2) The function Aðc; �Þ is non-decreasing and continuous on ðc; bÞ:
(3) limy-aþ Aða; yÞ ¼ limy-b� Aðy; bÞ ¼ 0:

Proof. For p ¼ 2 this lemma was proved in [EKL], (see [EKL, Lemma 2.3]). The
proof of this lemma for pa2 can be obtained by modification of the proof of Lemma
2.3 from [EKL]. &

Lemma 2.3. Suppose that T : Lpða; bÞ-Lpða; bÞ is compact and 1opoN: Let I ¼
ðc; dÞ and J ¼ ðc0; d 0Þ be subintervals of ða; bÞ; with JCI ; jJj40; jI �
Jj40;

R b

a
vpðxÞ dxoN and u; v40 on I : Then

AðIÞ4AðJÞ40: ð6Þ

Proof. For p ¼ 2 this lemma was proved in [EKL] by using that the projection on

the closest element is a linear projection in L2: This is not true for pa2 and in this
proof (1opoN) we will use Lemma 3.5 from [EHL2].
Let 0pfALpðJÞ; 0ojjf jjp;Jpjjf jjp;Ip1 with supp fCJ: Let yAJ; then

jjTðc0;yÞjjp;J40 and jjTðy;d 0Þjjp;J40

and then from [EHL2, Lemma 3.5] we have

minfjjTðc0;yÞjjp;J ; jjTðy;d 0Þjjp;Jgpmin
xAJ

jjTx;J jjp;J ;

which means AðJÞ40:
Next, let us suppose that c ¼ c0od 0od: By Evans et al. [EHL2], Theorem 3.8,

there exist x0AJ and x1AI such that AðJÞ ¼ jjTx0;J jjp;J and AðIÞ ¼ jjTx1;I jjp;I : Since
u; v40 on I ; it is then quite easy to see that x0AJo and x1AIo:
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If x0 ¼ x1; then, since u; v40 on I ; we get

AðIÞ ¼ jjTx1;I jjp;I4jjTx1;I jjp;J ¼ jjTx1;J jjp;J ¼ AðJÞ:

If x0ax1; then

AðIÞ ¼ jjTx1;I jjp;IXjjTx1;I jjp;JXjjTx1;J jjp;J4jjTx0;J jjp;J ¼ AðJÞ:

The case coc0od 0 ¼ d could be proved similarly and the case coc0od 0od follows
from previous cases and the monotonicity of AðIÞ: &

Remark 2.4. It follows from the continuity of A that for sufficiently small e40 there
is an a1; aoa1ob; for which Aða1; bÞ ¼ e: Indeed, since T is compact, there exists a
positive integer NðeÞ and points b ¼ a04a14?4aNðeÞ ¼ a with Aðai; ai�1Þ ¼ e; i ¼
1; 2;y;NðeÞ � 1 and Aða; aNðeÞ�1Þpe:

By the same arguments as in the proof of Lemma 2.6 from [EKL] we have:

Lemma 2.5. If T : Lpða; bÞ-Lpða; bÞ be compact and vALpða; bÞ; uALp0 ða; bÞ then the

number NðeÞ is a non-increasing function of e which takes on every sufficiently large

integer value.

The quantity NðeÞ is useful in the derivation of upper and lower estimates for the
approximation numbers of T :

Lemma 2.6. For all eAð0; jjT jjÞ;

aNðeÞþ2ðTÞpepaNðeÞþ1ðTÞ:

Proof. This follows from [EHL2, Lemma 3.19] (put K ¼ ða; bÞ). &

A version of this result, with a slightly different NðeÞ; was first proved in [EEH1]
and was then extended in [EHL1]. For general u and v it is impossible to find a simple
relation between e and NðeÞ; but by using the properties of A the behavior of eNðeÞ
when e-0þ can be determined.

Lemma 2.7. Given vALpða; bÞ; uALp0 ða; bÞ we have

lim
e-0þ

eNðeÞ ¼ ap

Z b

a

juðtÞvðtÞj dt:

This result follows from an adaptation of the argument of [EHL2]; see,
in particular, Theorem 6.4 of that paper. Together with Lemma 2.6 this
shows, again using the techniques of [EHL2], that the following theorem
holds.
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Theorem 2.8. Given vALpða; bÞ; uALp0 ða; bÞ the operator T defined in (1) satisfies

lim
n-N

nanðTÞ ¼ ap

Z b

a

juðtÞvðtÞj dt;

where ap ¼ Aðð0; 1Þ; 1; 1Þ:

A result of this type was established under weaker conditions on u and v in
[EHL2].

In [EL] was showed that Aðð0; 1Þ; 1; 1Þ is equal to ð1=lpÞ1=p where lp ¼
ð 2p
sinðp=pÞÞ

p 1
p0pp�1 is the first eigenvalue of the p-Laplacian problem on ð0; 1Þ:

3. Technical results

Here, we give some results of a technical nature which will prove very useful in the
sequel. We begin with some facts about the function A which were proved in [EHL2]
(see Lemmas 4.1, 4.2 and 4.3 in [EHL2] with G ¼ I) for the Hardy-type operators on
trees.

Lemma 3.1. (i) Let I ¼ ðc; dÞDða; bÞ and suppose that u and v are constant functions

over I : Then

AðI ; u; vÞ ¼ jI jjujjvjAðð0; 1Þ; 1; 1Þ:

(ii) Let I ¼ ðc; dÞCða; bÞ and suppose that vALpðIÞ and u1; u2ALp0 ðIÞ: Then

jAðI ; u1; vÞ � AðI ; u2; vÞjpjju1 � u2jjp0;I jjvjjp;I :

(iii) Let I ¼ ðc; dÞCða; bÞ and suppose that uALp0 ðIÞ and v1; v2ALpðIÞ: Then

jAðI ; u; v1Þ � AðI ; u; v2Þjp2jjujjp0;I jjv1 � v2jjp;I :

We now turn to the approximation of functions from Lp and Lp0 by step-functions.

Suppose uALp0 ða; bÞ and vALpða; bÞ and let a40: We define maAN by the
following requirements:
There exist two step-functions, ua and va; each with ma steps, say,

uaðxÞ :¼
Xma

j¼1
xjwwaðjÞðxÞ; vaðxÞ :¼

Xma

j¼1
cjwwaðjÞðxÞ; ð7Þ

where fwaðjÞgma
j¼1 is a family of non-overlapping intervals covering ða; bÞ; such that

for

au :¼ jju � uajjp0;ða;bÞ and av :¼ jjv � vajjp;ða;bÞ;

we have

ðiÞ maxðau; avÞpa; ð8Þ
and
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(ii) for any step-functions u0
a; v0a with less than ma steps, say na steps,

naoma; maxðjju � u0
ajjp0;ða;bÞ; jjv � v0ajjp;ða;bÞÞ4a:

Thus, ma is the minimum number of steps needed to approximate u in Lp0 and v in
Lp with the required accuracy. Note that, plainly,

jju � uajjp0;ða;bÞpa; jjv � vajjp;ða;bÞpa:

The best way to choose xi and ci for given fwagma
j¼1 is by finding xi and ci such thatZ

waðiÞ
juðtÞ � xijp

0�1 sgnðuðtÞ � xiÞ dt ¼ 0

and Z
waðiÞ

jvðtÞ � cij
p�1 sgnðvðtÞ � ciÞ dt ¼ 0

(see [S, Theorem 1.11]).
It turns out that the relationship between a and ma is crucial for us; we next

address this matter.

Lemma 3.2. Suppose uACða; bÞ-Lp0 ða; bÞ and vACða; bÞ-Lpða; bÞ; at least one of

them, say u; being non-constant. Then, when a decreases to 0; ma increases to N:

Proof. This lemma was proved in the case p ¼ 2 in [EKL], (see [EKL, Lemma 3.4]).
The proof for the case p ¼ 2 from [EKL] can be simply modified for 1opoN: &

Lemma 3.3. Suppose uACða; bÞ-Lp0 ða; bÞ and vACða; bÞ-Lpða; bÞ; at least one of

them, say u; being non-constant. Fix a40 and set La ¼ fb; 0obpa and mb ¼ mag:
Then, La is an interval with g ¼ inf La and gALa:

Proof. By straightforward modification of the proof of Lemma 3.5, [EKL] for the
case p ¼ 2 we can get the proof for 1opoN: &

Lemma 3.4. Suppose that uALp0 ða; bÞ-Cða; bÞ and vALpða; bÞ-Cða; bÞ are not equal

to zero on ða; bÞ; indeed, assume at least one of u and v be non-constant on ða; bÞ: Then,
there exists a040 such that given any a; 0oaoa0; there exists a b; 0oboa; with

mb ¼ ma þ 1 or mb ¼ ma þ 2:

Proof. By simple modification of the proof of Lemma 3.6 [EKL] for the case p ¼ 2
we can get the proof for 1opoN: &

Lemma 3.5. Let �NpaobpN and suppose that u0ALp0=ðp0þ1Þða; bÞ-Cða; bÞ: For

each small h40 define

x1 ¼ �1
h
; xiþ1 :¼ xi þ h for iA1;y; ½2=h2
;

put Ji ¼ ða; bÞ-ðxi; xiþ1Þ; iA1;y; ½2=h2
:
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Then

Z b

a

ju0ðtÞjp
0=ðp0þ1Þ

dt ¼ lim
h-0

X½2=h2


i¼1
jJijmax

xAJi

ju0ðxÞjp
0=ðp0þ1Þ

¼ lim
h-0

X½2=h2


j¼1
jJijmin

xAJi

ju0ðxÞjp
0=ðp0þ1Þ:

Proof. Simply use the definition of the integral. &

We are now prepared to establish an important estimate for lim supa-0þ ama:

Theorem 3.6. Suppose uALp0 ða; bÞ; vALpða; bÞ and u0ALp0=ðp0þ1Þða; bÞ-Cða; bÞ;
v0ALp=ðpþ1Þða; bÞ-Cða; bÞ: Then,

lim sup
a-0þ

amapcðp; p0Þðjju0jjp0=ðp0þ1Þ;ða;bÞ þ jjv0jjp=ðpþ1Þ;ða;bÞÞ:

Proof. This theorem was proved for p ¼ 2 in [EKL]. With help of our previous lemmas
it is simple to modify the proof of Theorem 3.8 [EKL] for the case 1opoN: &

4. The Main theorem

The next theorem give us quite precise information about remainder estimates for
NðeÞ:

Theorem 4.1. Let �NpaobpN; let uALp0 ða; bÞ; vALpða; bÞ and suppose that

u0ALp0=ðp0þ1Þða; bÞ-Cð½a; b
Þ; v0ALp=ðpþ1Þða; bÞ-Cð½a; b
Þ: Then

lim sup
e-0þ

ap

Z b

a

juðtÞvðtÞj dt � eNðeÞ
����

����N1=2ðeÞ

pcðp; p0Þðjju0jjp0=ðp0þ1Þ;ða;bÞ þ jjv0jjp=ðpþ1Þ;ða;bÞÞ jjujjp0;ða;bÞ þ jjvjjp;ða;bÞ
� 	

þ 3apjjuvjj1;ða;bÞ;

where ap ¼ Aðð0; 1Þ; 1; 1Þ and cðp; p0Þ is a constant depending only on p and p0:

Proof. For p ¼ 2 this theorem was proved in [EKL]. The proof of this key theorem
for 1opoN can be obtained by easy modification of the proof of Theorem 4.1 from
[EKL]. &

From the previous theorem follows the Main theorem with the estimate for the
approximation numbers of T given by (1).

J. Lang / Journal of Approximation Theory 121 (2003) 61–7068



Theorem 4.2. Let �NpaobpN; suppose that uALp0 ða; bÞ; vALpða; bÞ and let

u0ALp0=ðp0þ1Þða; bÞ-Cðða; bÞÞ; v0ALp=ðpþ1Þða; bÞ-Cðða; bÞÞ: Then

lim sup
n-N

n1=2 ap

Z b

a

juvj dt � nan

����
����

p3ap

Z b

a

juvj dt

þ 3cðp; p0Þðjju0jjp0=ðp0þ1Þ;ða;bÞ þ jjv0jÞjjp=ðpþ1Þ;ða;bÞÞðjjujjp0;ða;bÞ þ jjvjjp;ða;bÞÞ;

where ap ¼ sinðp=pÞ
2p p0pp�1:

Proof. Simply use Theorem 4.1, Lemmas 2.5, 2.6 and the fact that

limn-N naanðTÞ ¼ 0 for any ao1 and ap ¼ ð 1lp
Þ1=p: &

For a bounded interval ða; bÞ; it follows immediately from Hölder’s inequality that
Theorem 4.2 gives rise to

Theorem 4.3. Let �NoaoboN and suppose that u0; v0ACð½a; b
Þ: Then

lim sup
n-N

n1=2jap

Z b

a

juvj dt � nanj

p3ap

Z b

a

juvj dt þ 3cðp; p0Þðb � aÞ

� ðjju0jjp0;ða;bÞ þ jjv0jjp;ða;bÞÞðjjujjp0;ða;bÞ þ jjvjjp;ða;bÞÞ;

where ap ¼ sinðp=pÞ
2p p0pp�1:

From the following observation we can see that any optimal exponent from

Theorem 4.2 has to belong to ½1
2
; 1
:

Observation 4.4. Let �NpaobpN:

(i) Let ao1=2: Then for every uALp0 ða; bÞ; vALpða; bÞ with

u0ALp0=ðp0þ1Þða; bÞ-Cð½a; b
Þ; v0ALp=ðpþ1Þða; bÞ-Cð½a; b
Þ we have

lim sup
n-N

na ap

Z b

a

juvjdt � nanðTÞ
����

���� ¼ 0:

(ii) Let a41: Then there exist a and b; and functions u and v satisfying the conditions

of Theorem 4.2 on the interval defined by a and b; such that

lim sup
n-N

na ap

Z b

a

juvjdt � nanðTÞ
����

���� ¼ N:
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Proof. (i) follows from the proof of Theorem 4.1. Put ma ¼ ½NaðeÞ
 or ½NaðeÞ
 þ 1:
(ii) Take ða; bÞ ¼ ð0; 1Þ and u ¼ 1; v ¼ 1þ x: Then put ma ¼ ½NaðeÞ
 in the proof

of Theorem 4.1 and the result follows. &
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